Use of TH-EGFP transgenic mice as a source of identified dopaminergic neurons for physiological studies in postnatal cell culture.

نویسندگان

  • C Jomphe
  • M-J Bourque
  • G D Fortin
  • F St-Gelais
  • H Okano
  • K Kobayashi
  • L-E Trudeau
چکیده

The physiological and pharmacological properties of dopaminergic neurons in the brain are of major interest. Although much has been learned from cell culture studies, the physiological properties of these neurons remain difficult to study in such models because they are usually in minority and are difficult to distinguish from other non-dopaminergic neurons. Here we have taken advantage of a recently engineered transgenic mouse model expressing enhanced green fluorescence protein (EGFP) under the control of the tyrosine hydroxylase promoter to establish a more effective dopaminergic neuron cell culture model. We first evaluated the specificity of the EGFP expression. Although ectopic expression of EGFP was found in cultures derived from postnatal day 0 pups, this decreased over time in culture such that after 2 weeks, approximately 70% of EGFP-expressing neurons were dopaminergic. We next sought to validate this dopaminergic neuron culture model. We evaluated whether EGFP-expressing dopaminergic neurons displayed some of the well-established properties of dopaminergic neurons. Autoreceptor stimulation inhibited the activity of dopaminergic neurons while neurotensin receptor activation produced the opposite effect. Confocal imaging of the synaptic vesicle optical tracer FM4-64 in EGFP-expressing dopaminergic neurons demonstrated the feasibility of high resolution monitoring of the activity of single terminals established by these neurons. Together, this work provides evidence that primary cultures of postnatal TH-EGFP mice currently represent an excellent model to study the properties of these cells in culture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Rat Primary Midbrain Neurons Cultured in DMEM/F12 and Neurobasal Mediums

Introduction: Midbrain dopaminergic neurons are involved in various brain functions, including motor behavior, reinforcement, motivation, learning, and cognition. Primary dopaminergic neurons and also several lines of these cells are extensively used in cell culture studies. Primary dopaminergic neurons prepared from rodents have been cultured in both DMEM/F12 and neurobasal mediums in several ...

متن کامل

Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase-expressing neurons in adult mouse striatum.

Whole-cell recordings were obtained from tyrosine hydroxylase-expressing (TH(+)) neurons in striatal slices from bacterial artificial chromosome transgenic mice that synthesize enhanced green fluorescent protein (EGFP) selectively in neurons expressing TH transcriptional regulatory sequences. Stereological cell counting indicated that there were approximately 2700 EGFP-TH(+) neurons/striatum. W...

متن کامل

کاربرد سلول های بنیادی در درمان بیماری پارکینسون

Stem cells are undifferentiated cells with the ability to divide and differentiate into distinct cell types. The source of these cells is from embryos and adults, that each cell has its own specific characteristics. For nearly decades, experimental studies have been conducted to use these types of cells to treat various diseases. Parkinson's disease is one of the most common neurodegenerative d...

متن کامل

Effects of wild-type and mutated copper/zinc superoxide dismutase on neuronal survival and L-DOPA-induced toxicity in postnatal midbrain culture.

Mutations in the free radical-scavenging enzyme copper/zinc superoxide dismutase (Cu/Zn-SOD) are associated with neuronal death in humans and mice. Here, we examine the effects of human wild-type (WT SOD) and mutant (Gly93 --> Ala; G93A) Cu/Zn-SOD enzyme on the fate of postnatal midbrain neurons. One-week-old cultures from transgenic mice expressing WT SOD enzyme had significantly more midbrain...

متن کامل

Cinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease

Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neuroscience methods

دوره 146 1  شماره 

صفحات  -

تاریخ انتشار 2005